Температура электрической дуги может достигать. Явление электрической дуги

  • Электри́ческая дуга́ (во́льтова дуга́, дугово́й разря́д) - физическое явление, один из видов электрического разряда в газе.

    Впервые была описана в 1802 году русским учёным В. Петровым в книге «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (Санкт-Петербург, 1803). Электрическая дуга является частным случаем четвёртой формы состояния вещества - плазмы - и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

    Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:

    При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 - 5 В, а напряжение дугообразования - в два раза больше (9 - 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона - до 6 В).

    Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

    Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд - плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

    Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.

    После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

    При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Размыкание электрической цепи при значительных токах и напряжениях, как правило, сопровождается электрическим разрядом между расходящимися контактами. При расхождении контактов резко возрастает переходное сопротивление контакта и плотность тока в последней площадке контактирования. Контакты разогреваются до расплавления, и образуется контактный перешеек из расплавленного металла, который при дальнейшем расхождении контактов рвется, и происходит испарение металла контактов. Воздушный промежуток между контактами ионизируется и становится проводящим, в нем под действием высокого напряжения, возникающего вследствие законов коммутации, появляется электрическая дуга.

Электрическая дуга способствует разрушению контактов и снижает быстродействие коммутационного аппарата, так как ток в цепи спадает до нуля не мгновенно. Воспрепятствовать появлению дуги можно увеличением сопротивления цепи, в которой происходит размыкание контактов, увеличением расстояния между контактами либо применением специальных мер дугогашения.

Произведение предельных значений напряжения и тока в цепи, при которых электрическая дуга не возникает при минимальном расстоянии между контактами, называется разрывной или коммутируемой мощностью контактов. По мере повышения напряжения в цепи предельный коммутируемый ток приходится ограничивать. Коммутируемая мощность зависит также от постоянной времени цепи: чем больше
тем меньшую мощность могут коммутировать контакты. В цепях переменного тока электрическая дуга гаснет в момент, когда мгновенное значение тока равно нулю. Дуга может вновь появиться в следующий полупериод, если напряжение на контактах возрастает быстрее, чем восстанавливается электрическая прочность промежутка между контактами. Однако во всех случаях дуга в цепи переменного тока менее устойчива, а разрывная мощность контактов в несколько раз выше, чем в цепи постоянного тока. На контактах маломощных электрических аппаратов электрическая дуга появляется редко, но часто наблюдается искрение ‑ пробой изоляционного промежутка, образованного при быстром размыкании контактов в слаботочных цепях. Это особенно опасно в чувствительных и быстродействующих аппаратах (реле), в которых расстояние между контактами очень мало. Искрение сокращает срок службы контактов, может привести к ложным срабатываниям. Для уменьшения искрения на контактах применяют специальные устройства искрогашения.

Устройство дуго- и искрогашения.

Наиболее эффективным способом гашения электрической дуги является ее охлаждение за счет перемещения в воздухе, соприкосновения с изоляционными стенками специальных камер, которые отбирают теплоту дуги.

В современных аппаратах широкое распространение получили дугогасительные камеры с узкой щелью и магнитным дутьем. Дугу можно рассматривать как проводник с током; если его поместить в магнитное поле, то возникнет сила, которая вызовет перемещение дуги. При своем движении дуга обдувается воздухом; попадая в узкую щель между двумя изоляционными пластинами, она деформируется и вследствие повышения давления в щели камеры гаснет (рис. 21).

Рис. 21. Устройство камеры дугогашения с узкой щелью

Щелевая камера образована двумя стенками 1, выполненными из изоляционного материала. Зазор между стенками очень мал. Катушка 4, включенная последовательно с главными контактами 3, возбуждает магнитный поток
который направляется ферромагнитными наконечниками 2 в пространство между контактами. В результате взаимодействия дуги и магнитного поля появляется сила
вытесняющая дугу к пластинам 1. Данная сила называется сила Лоренца, которая определяется как:

где ‑ заряд частицы [Кулон],

‑скорость заряженной частицы в поле[м/с],

‑сила, действующая на заряженную частицу [Ньютоны],

‑угол между вектором скорости и вектором магнитной индукции.

Можно сказать что скорость частицы в проводнике равна:
где ‑ длина проводника (дуги), а ‑ время прохождения заряженной частицы по дуге. В свою очередь ток ‑ это количество заряженных частиц в секунду через поперечное сечение проводника
. То есть можно записать:

где ‑ ток в проводнике (дуге) [Амперы],

‑длина проводника (дуги) [метры],

‑магнитная индукция поля [Теслы],

‑сила, действующая на проводник (дугу)[Ньютоны],

‑угол между вектором тока и вектором магнитной индукции.

Направление силы соответствует правилу левой руки: магнитные силовые линии упираются в ладонь, выпрямленные четыре пальца располагаются по направлению тока отогнутый большой палец показывает направление электромагнитной силы
. Описанное действие магнитного поля (индукции ) называют электромеханическим или силовым, а полученное выражение ‑ законом электромагнитных сил.

Эта конструкция дугогасительной камеры применяется и на переменном токе, так как с изменением направления тока изменяется направление потока
а направление силы
остается неизменным.

Для уменьшения искрения на маломощных контактах постоянного тока применяют включение диода параллельно нагрузочному устройству (рис. 22).

Рис. 22. Включение диода для уменьшения искрения

При этом цепь после коммутации (после отключения источника) замыкается через диод, таким образом уменьшается энергия искрообразовния.

Электрическая дуга представляет собой вид разряда, характеризующийся большой плотностью тока, высокой температурой, повышенным давлением газа и малым падением напряжения на дуговом промежутке. При этом имеет место интенсивное нагревание электродов (контактов), на которых образуются так называемые катодные и анодные пятна. Катодное свечение концентрируется в небольшом ярком пятне, раскаленная часть противоположного электрода образует анодное пятно.

В дуге можно отметить три области, весьма различные по характеру протекающих в них процессов. Непосредственно к отрицательному электроду (катоду) дуги прилегает область катодного падения напряжения. Далее идет плазменный ствол дуги. Непосредственно к положительному электроду (аноду) прилегает область анодного падения напряжения. Эти области схематично показаны на рис. 1.

Рис. 1. Строение электрической дуги

Размеры областей катодного и анодного падения напряжении на рисунке сильно преувеличены. В действительности их протяженность очень мала Например, протяженность катодного падения напряжения имеет величину порядка пути свободного движения электрона (меньше 1 мк). Протяженность области анодного падения напряжения обычно несколько больше этой величины.

В обычных условиях воздух является хорошим изолятором. Так, необходимое для пробоя воздушного промежутка в 1 см напряжение составляет 30 кВ. Чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц (электронов и ионов).

Как возникает электрическая дуга

Электрическая дуга, представляющая собой поток заряженных частиц, в начальный момент расхождения контактов возникает в результате наличия свободных электронов газа дугового промежутка и электронов, излучаемых с поверхности катода. Свободные электроны, находящиеся в промежутке между контактами перемещаются с большой скоростью по направлению от катода к аноду под действием сил электрического поля.

Напряженность поля в начале расхождения контактов может достигать нескольких тысяч киловольт на сантиметр. Под действием сил этого поля вырываются электроны с поверхности катода и перемещаются к аноду выбивая из него электроны, которые образуют электронное облако. Созданный таким путем первоначальный поток электронов образует в дальнейшем интенсивную ионизацию дугового промежутка.

Наряду с ионизационными процессами, в дуге параллельно и непрерывно идут процессы деионизации. Процессы деионизации состоят а том, что при сближении двух ионов разных знаков или положительного иона и электрона они притягиваются и, сталкиваясь, нейтрализуются, кроме того, наряженные частицы перемещаются из области горения душ с большей концентрацией зарядов в окружающую среду с меньшей концентрацией зарядов. Все эта факторы приводят к понижению температуры дуги, к ее охлаждению и погасанию.

Рис. 2. Электрическая дуга

Дуга после зажигания

В установившемся режиме горения дут ионизационные и деионизационные процессы в ней находятся в равновесии. Ствол дуги с равным количеством свободных положительных и отрицательных зарядов характеризуется высокой степенью ионизации газа.

Вещество, степень ионизации которого близка к единице, т.е. в котором нет нейтральных атомов и молекул, называют плазмой.

Электрическая дуга характеризуется следующими особенностями:

1. Ясно очерченной границей между стволом дуги и окружающей средой.

2. Высокой температурой внутри ствола дуга, достигающей 6000 - 25000K.

3. Высокой плотностью тока и стволе дуги (100 - 1000 А/мм 2).

4. Малыми значениями анодного и катодного падения напряжения и практически не зависит от тока (10 - 20 В).

Вольт-амперная характеристика электрической дуги

Основной характеристикой дуги постоянного тока является зависимость напряжения дуги от тока, которая называется вольт-амперной характеристикой (ВАХ).

Дуга возникает между контактами при некотором напряжении (рис. 3), называемом напряжением зажигания Uз и зависящим от расстояния между контактами, от температуры и давления среды и от скорости расхождения контактов. Напряжение гашения дуги Uг всегда меньше напряжения U з.


Рис. 3. Вольт-амперная характеристика дуги постоянного тока (а) и ее схема замещения (б)

Кривая 1 представляет собой статическую характеристику дуги, т.е. получаемую при медленном изменении тока. Характеристика имеет падающий характер. С ростом тока напряжение на дуге уменьшается. Это означает, что сопротивление дугового промежутка уменьшается быстрее, чей увеличивается ток.

Если с той или иной скоростью уменьшать ток в дуге от I1 до нуля и при этом фиксировать падение напряжения на дуге, то получатся кривые 2 и 3. Эти кривые носят название динамических характеристик.

Чем быстрее уменьшать ток, тем ниже будут лежать динамические ВАХ. Это объясняется тем, что при снижении тока такие параметры дуги, как сечение ствола, температура, не успевают быстро измениться и приобрести значения, соответствующие меньшему значению тока при установившемся режиме.

Падение напряжения на дуговом промежутке:

Ud = U з + EdId ,

где U з = U к + U а - околоэлектродное падение напряжения, Ed - продольный градиент напряжения в дуге, Id - дина дуги.

Из формулы следует, что с увеличением длины дуги падение напряжения на дуге будет увеличиваться, и ВАХ будет располагаться выше.

С электрической дугой борются при конструировании коммутационных электрических аппаратов. Свойства электрической дуги используются в и в .

22 августа 2012 в 10:00

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 10...15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Причины возникновения электрический дуги

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление(плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

Удлинение дуги

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70...80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством — дугогасительной камерой. В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем. В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Кроме указанных выше способов гашения дуги, используют также: сжатый воздух, потоком которого вдоль или поперек обдувается дуга, обеспечивая ее интенсивное охлаждение (вместо воздуха применяются и другие газы, часто получаемые из твердых газогенерирующих материалов — фибры, винипласта и т. п. — за счет их разложения самой горящей дугой), элегаз (шестифтористая сера), обладающий более высокой электрической прочностью, чем воздух и водород, в результате чего дуга, горящая в этом газе, даже при атмосферном давлении достаточно быстро гасится, высокоразреженный газ (вакуум), при размыкании контактов в котором дуга не загорается вновь (гаснет) после первого прохождения тока через нуль.

Последние публикации

В коммутационных электрических аппаратах, предназначенных для замыкания и размыкания цепи с током, при отключении возникает электрический разряд в газе либо в виде в виде тлеющего разряда , либо в виде дуги . Тлеющий разряд возникает когда ток ниже 0,1А, а напряжение на контактах 250-300В. Тлеющий разряд встречается на контактах маломощных реле. Дуговой разряд наблюдается только при больших токах. Минимальный ток для металлов 0,4-0,9А.


В дуговом разряде различают три области: околокатодную, область ствола дуги, околоанодную (рис.15).

Рис. 15. Области дугового разряда

Околокатодная область занимает весьма небольшое пространство (общая длина ее и анодной области порядка 10 -6 м). Падение напряжения на ней составляет 10-20В и практически не зависит от тока. Средняя напряженность электрического поля достигает 100кВ/см. Такая весьма высокая напряженность электрического поля, достаточная для ударной ионизации газа (воздуха при нормальном атмосферном давлении) или паров материала катода, обусловлена наличием в этой области нескомпенсированного положительного объемного заряда. Однако ввиду малой протяженности околокатодной области электроны не набирают скорости, достаточной для ударной ионизации. Чаще всего после удара атом переходит в возбужденное состояние (электрон атома переходит на более удаленную от ядра орбиту). Теперь для ионизации возбужденного атома требуется меньшая энергия. Такая ионизация называется ступенчатой . При ступенчатой ионизации необходим многократный (несколько десятков) удар электронов по атому.

Наличие нескомпенсированного положительного объемного заряда в значительной степени определяет чрезвычайно высокую плотность тока на катоде - 100-1000А/мм 2 .

Положительные ионы разгоняются в поле катодного падения напряжения и бомбардируют катод. При ударе ионы отдают свою энергию катоду, нагревая его и создавая условия для выхода электронов, происходит термоэлектронная эмиссия электронов с катода.

Область ствола электрической дуги представляет собой газообразную, термически возбужденную ионизированную квазинейтральную среду- плазму, в которой под действием электрического поля носители зарядов (электроны и ионы) движутся в направлении к электродам противоположного знака.

Средняя напряженность электрического поля около 20-30В/см, что недостаточно для ударной ионизации. Основным источником электронов и ионов является термическая ионизация, когда при большой температуре скорость нейтральных частиц увеличивается настолько, что при их столкновении происходит их ионизация.

Околоанодная область , имеющая весьма малую протяженность характеризуется также резким падением потенциала, обусловленным наличием нескомпенсированного отрицательного объемного заряда. Электроны разгоняются в поле анодного падения напряжения и бомбардируют анод который нагревается до температуры как правило большей чем температура катода. Околоанодная область не оказывает существенного влияния на возникновение и условие существования дугового разряда. Задача анода сводится к приему электронного потока из ствола дуги.



Если U c <(U к +U А), то дуга называется короткой, она характерна для некоторых низковольтных аппаратов.

Если U c >(U к +U А), то дуга называется длинной, она характерна для высоковольтных аппаратов.

Статическая вольт-амперная характеристика – устанавливает связь между различными значениями установившегося постоянного тока и падением напряжения на дуге при неизменной длине дуги и неизменных условиях ее горения. В этом случае при каждом значении установившегося постоянного тока устанавливается тепловой баланс (количество тепла выделяемого в дуге равно количеству тепла отдаваемого дугой в окружающую среду)

где m - показатель, зависящий от вида (способа) воздействия окружающей среды на ствол дуги; A m – постоянная, определяемая интенсивностью теплообмена в зоне ствола дуги при данном (m ) способе воздействия окружающей среды; l – длина дуги.

Характеристика имеет падающий характер. При увеличении силы тока возрастает термоэлектронная эмиссияэлектронов с катода и степень ионизации дуги вследствие чего снижается сопротивление дуги. Причем скорость снижения сопротивления дуги выше, чем скорость роста тока.

Динамическая вольт-амперная характеристика – устанавливает связь между током, изменяющемся определенным образом во времени и падением напряжения на дуге при неизменной длине дуги и неизменных условиях ее горения. В этом случае скорость изменения тока такова, что тепловой баланс не успевает установиться, изменение сопротивления дуги отстает от изменения тока.

При возрастании тока динамическая характеристика (кривая В на рис. 16) идет выше статистической (кривая А на рис. 16), так как при быстром росте тока сопротивление дуги падает медленнее, чем растет ток. При уменьшении – ниже, поскольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С на рис. 16).


Динамическая характеристика в значительной степени определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бесконечно малое по сравнению с тепловой постоянной времени дуги, то в течении времени спада тока до нуля сопротивление дуги останется постоянным. в этом случае динамическая характеристика изобразится прямой, проходящей в начало координат (прямая D на рис. 16), т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

Условия стабильного горения и гашения дуги постоянного тока . Рассмотрим цепь постоянного тока (рис. 17).

Рис.17. Дуга в цепи постоянного тока

Для рассматриваемой цепи

Очевидно, что стационарным режимом, когда дуга горит стабильно будет такой, при котором ток в цепи не меняется, т. е. . В этом режиме скорость роста числа ионизированных частиц равна скорости их исчезновения в результате процессов деионизации -устанавливается динамическое равновесие.

На графике приведена падающая вольт-амперная характеристика дуги и наклонная прямая U-iR . Из (48) следует, что

Отсюда очевидно, что в точках 1 и 2. Причем точка 1 является точкой неустойчивого равновесия; случайные как угодно малые отклонения тока приводят или к увеличению тока до значения i 2 , или уменьшают его до нуля. В точке 2 дуга горит стабильно; случайные малые отклонения тока в ту или другую сторону приводят его к обратно к значению i 2 . Из графика видно, что дуга при всех значениях тока не может гореть стабильно если падение напряжения на дуге () превосходит напряжение подаваемое на дугу от источника ()

Таким образом, для гашения дуги необходимо создать условия при которых падение напряжения на дуге превосходило бы напряжение подаваемое на дугу от источника, в пределе напряжение сети.

Для гашения дуги используют три явления :

1. Увеличение длины дуги путём её растяжения.

Чем длиннее дуга, тем большее напряжение необходимо для ее существования (тем выше располагается ее вольт-амперная характеристика – (кривая U 1 д на рис.17). Если напряжение, подаваемое на дугу от источника (прямая ) окажется меньше вольт-амперной характеристики дуги – (кривая U 1 д), то нет условий стабильного горения дуги, дуга гаснет.

Это самый простой, но самый не эффективный способ. Например, для того, чтобы, например, погасить дугу с током 100A при напряжение 220 B требуетсярастянуть дугу на расстояние 25 ÷ 30 см, что практически в электрических аппаратах сделать невозможно (увеличиваются габариты). Поэтому данный способ используется в качестве основного только услаботочных электрических аппаратов (реле, магнитные пускатели, выключатели).

2. Воздействие на ствол дуги путём охлаждения, добиваясь увеличения продольного градиента напряжения.


2.1 Гашение дуги в узких щелях (рис. 18). Если дуга горит в узкой щели, образованной дугостойким материалом, то благодаря соприкосновению с холодными поверхностями происходит интенсивное охлаждение и диффузия заряженных частиц из канала дуги в окружающую среду. Это приводит к гашению дуги. Способ используется в аппаратах на напряжение до 1000В.

Рис. 18. Гашение дуги в узких щелях

2.2 Гашение дуги в масле (рис.19). Если контакты отключающего аппарата поместить в масло, то возникающая при размыкании дуга приводит к интенсивному газообразованию и испарению масла. Вокруг дуги образуется газовый пузырь, состоящий в основном из водорода, обладающего высокими дугогасящими свойствами. Повышенное давление внутри газового пузыря способствует лучшему охлаждению дуги и ее гашению. Способ используется в аппаратах на напряжение выше 1000В.


2.3 Газовоздушное дутье (рис.20). Охлаждение дуги улучшается, если создать направленное движение газов - дутье вдоль или поперек дуги.

Рис.20.Газовоздушное дутье: а - вдоль дуги, б - поперек дуги.

Способ используется в аппаратах на напряжение выше 1000В.

3. Используя околоэлектродное падение напряжения.

Деление длинной дуги на ряд коротких (рис. 21). Если длинную дугу затянуть в дугогасительное устройство, имеющее металлические пластины (дугогасительную решетку), то она разделится на п коротких дуг. У каждой пластины решётки возникают околоэлектродные падения напряжения. За счёт суммы околоэлектродных падений напряжений суммарное падение напряжения становится больше,чем даваемое источником питания, и дуга гаснет. Дуга гаснет, если U где U - напряжение сети: U кат - катодное падение напряжения (20-25 В в дуге постоянного тока; 150-250 В в дуге переменного тока). Способ используется в аппаратах на напряжение выше 1000В.


Рис.21. Деление длинной дуги на ряд коротких

Гашению дуги способствуют, используемые в качестве внутренней изоляции аппаратов на напряжение выше 1000В, высокоразряженные газы или газы высокого давления.

Гашение дуги в вакууме. Высокоразряженный газ обладает электрической прочностью в десятки раз большей, чем газ при атмосферном давлении; это используется в вакуумных контакторах и выключателях.

Гашение дуги в газах высокого давления. Воздух при давлении 2 МПа и более обладает высокой электрической прочностью, что позволяет создать компактные гасительные устройства в воздушных выключателях. Эффективно использование шестифтористой серы SF 6 (элегаза) для гашения дуги.

Условия гашения дуги переменного тока .

Пусть контакты разошлись в точке а. Между ними загорается дуга. К концу полупериода из-за уменьшения тока увеличивается сопротивление ствола дуги и соответственно увеличивается напряжение на дуге. При подходе тока к нулю к дуге подводится малая мощность, температура дуги уменьшается, соответственно замедляется термическая ионизация и ускоряются процессы деионизации - дуга гаснет (точка 0 ). Ток в цепи обрывается до своего естественного прохождения через нуль. Напряжение соответствующие обрыву тока – пик гашения U г .


Рис. 22. Гашения дуги переменного тока при активной нагрузке

После гашения дуги происходит процесс восстановления электрической прочности дугового промежутка (кривая а 1 – б 1). Под электрической прочности дугового промежутка подразумевается напряжение, при котором происходит электрический пробой дугового промежутка. Начальная электрическая прочность (точка а 1) и скорость ее возрастания зависят от свойств дугогасительного устройства. В момент t 1 кривая напряжения на дуговом промежутке пересекается с кривой восстановления электрической прочности дугового промежутка – происходит зажигание дуги. Напряжение зажигания дуги – пик зажигания U з . Кривая напряжения на дуге имеет седлообразную форму.

В точке 0 1 дуга вновь гаснет и происходят процессы, аналогичные описанным ранее. К моменту 0 1 вследствие расхождения контактов длина дуги возрастает, отвод тепла от дуги увеличивается, Увеличивается соответственно и начальная электрическая прочность (точка а 2) и скорость ее возрастания (кривая а 2 –в 2). Соответственно этому увеличивается и бестоковая пауза 0 1 - t 2 > 0 - t 1 .

В момент t 2 снова происходит зажигание дуги. В точке 0 11 дуга гаснет. Вновь увеличивается начальная электрическая прочность (точка а 3) и скорость ее возрастания (кривая а 3 –б 3). Кривая напряжения не пересекается с кривой возрастания электрической прочности. Дуга в этом полупериоде не зажигается.

В открытой дуге при высоком напряжении (роговой разрядник), определяющим фактором является активное сопротивление сильно растянутого ствола дуги условия гашения дуги переменного тока приближаются к условиям гашения дуги постоянного тока и процессы после перехода тока через нуль мало влияют на гашение дуги.

При индуктивной нагрузке бестоковая пауза очень мала (примерно 0,1мкс), то есть дуга горит практически непрерывно. Отключение индуктивной нагрузки сложнее, чем активной. Здесь нет обрыва тока.

В целом процесс дугогашения на переменном токе легче, чем на постоянном. Рациональным условием гашения дуги переменного тока следует считать такое, когда гашение осуществляется в первый после размыкания контактов переход тока через нуль.

Вопросы для самопроверки:

· Области дугового разряда.

· Статическая вольт-амперная характеристика.

· Динамическая вольт-амперная характеристика.

· Условия стабильного горения и гашения дуги постоянного тока.

· Какие явления используются для гашения дуги?

· Условия гашения дуги переменного тока.